Chirag Manchanda

Email: chiragm@berkeley.edu Mobile: (+1) 341 766 8839

Webpage: chirag-manchanda.github.io

EDUCATION

University of California, Berkeley

Berkeley, CA

Ph.D. in Environmental Engineering, Advisor: Prof. Joshua S. Apte

2021-Present

University of California, Berkeley

Berkeley, CA

M.S. in Civil and Environmental Engineering, GPA: 4.0/4.0

2021-2022

PUBLICATIONS

- 1. J. Apte, and C. Manchanda, "High-resolution urban air pollution mapping", Science, 385, 380-385, 2024
- C. Manchanda, R. Harley, J. Marshall, A. Turner, and J. Apte, "Integrating mobile and fixed-site black carbon measurements to bridge spatiotemporal gaps in urban air quality", Environmental Science & Technology, 58, 12563–12574, 2024
- C. Manchanda, M. Kumar, V. Singh, N. Hazarika, M. Faisal, V. Lalchandani, A. Shukla, J. Dave, N. Rastogi, and S. N. Tripathi, "Chemical speciation and source apportionment of ambient PM_{2.5} in New Delhi before, during, and after the Diwali fireworks", Atmospheric Pollution Research, 13, 101428, 2022
- 4. C. Manchanda, M. Kumar, and V. Singh, "Meteorology governs the variation of Delhi's high particulate-bound chloride levels", *Chemosphere*, **291**, 132879, **2021**
- C. Manchanda, M. Kumar, V. Singh, M. Faisal, N. Hazarika, A. Shukla, V. Lalchandani, V. Goel, N. Thamban, D. Ganguly, and S. Tripathi, "Variation in chemical composition and sources of PM_{2.5} during the COVID-19 lockdown in Delhi", Environment International, 153, 106541, 2021
- 6. A. Saxena, E. Ng, C. Manchanda, and T. Canchi, "Cardiac thermal pulse at the neck-skin surface as a measure of stenosis in the carotid artery", *Thermal Science and Engineering Progress*, 19, 100603, 2020
- 7. A. Saxena, E. Ng, M. Mathur, C. Manchanda, and N. Jajal, "Effect of carotid artery stenosis on neck skin tissue heat transfer", *International Journal of Thermal Sciences*, **145**, 106010, **2019**

RESEARCH EXPERIENCE

University of California, Berkeley | Graduate Student Researcher Apte Research Group

Berkeley, CA Fall 2021 - Present

Data-Driven Modeling and Assimilation Methods for Enhancing Urban Air Quality

- Designs a statistical framework that integrates mobile and fixed-site pollutant measurements to generate high-resolution and comprehensive pollutant concentration fields, enhancing spatial density and temporal completeness.
- Implements an innovative inverse modeling routine that leverages diverse pollutant monitoring techniques to improve the accuracy of pollutant emission flux estimates, refining and constraining the emission sources.
- Develops a dynamical controllability framework to assess optimal control strategies for reducing pollution exposure levels and disparities, providing valuable insights into achieving targeted air quality goals.

Indian Institute of Technology Delhi | Research Associate

Delhi, India Summer 2018 - Summer 2021

Air Quality Research Group

Source Apportionment Analysis for Quantifying Variation in Sources of Ambient PM_{2.5} during Periods of Marked Variation in Anthropogenic Activities in New Delhi, India

- Investigated the variation in chemical composition and sources contributing to ambient PM2.5 during a major firework event (Diwali) and the COVID-induced lockdown, utilizing near-real-time elemental and organic particulate measurements.
- Source apportionment analysis identified fireworks as the primary contributor, responsible for over 95 percent of total metallic PM_{2.5}, reaching concentrations exceeding 500 μg/m³ during Diwali.

On-Road Exposure to Particulate Matter in New Delhi

- Carried out on-road measurements to investigate in-vehicle exposure to particulate matter in Delhi, examining the influence of congestion intensity, land-use patterns, and vehicular speed on particulate levels.

Nanyang Technological University Singapore | Research Assistant

Singapore

School of Mechanical and Aerospace Engineering

Spring 2018 - Summer 2018

Non-Invasive Detection of Stenosis in Human Carotid Arteries

- Conducted high-resolution transient simulations of blood flow through a computational model of human carotid arteries to investigate stenosis detection. Discovered that the Strouhal number associated with a vortex in the shear layer downstream of the stenosed region varied with the degree of stenosis. This variation was identified as a distinct thermal signature that could be extracted from the neck surface.
- Investigated causality between flow irregularities and thermal patterns on the neck surface, employing a combination of numerical simulations and experimental methods. Utilized thermography and a Support Vector Machine (SVM) algorithm to distinguish between patients with and without stenosis.

SCHOLARSHIPS AND AWARDS

• Outstanding Graduate Student Instructor Award

2024

Recognized among the top 5 percent of teaching assistants at UC Berkeley for excellence in instruction.

STEM*FYI Graduate Diversity Fellow

2023

Awarded USD 500 technology grant by the Office of Graduate Diversity, UC Berkeley.

Founder's Gold Medal for the Best Outgoing Student

2018

Ranked First (out of 270 students) in the graduating class of 2018, Manipal University.

NTU India Connect Scholar

2018

Selected among 3 students from India for conducting thesis research at Nanyang Technological University, Singapore.

• Avery Dennison InvEnt Scholarship

2015

Awarded USD 1300 for innovative skills and academic performance.

Academic Excellence Award

2014 - 2018

Recipient of the Academic Excellence Award for each academic year consecutively throughout the bachelor's degree.

Teaching

Graduate Student Instructor at UC Berkeley Air Quality Engineering (CE 218A)

Fall 2023